Groups with the same lower central sequence as a relatively free group. I. The groups
نویسندگان
چکیده
منابع مشابه
Simple groups with the same prime graph as $D_n(q)$
Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...
متن کاملOn some Frobenius groups with the same prime graph as the almost simple group ${ {bf PGL(2,49)}}$
The prime graph of a finite group $G$ is denoted by $Gamma(G)$ whose vertex set is $pi(G)$ and two distinct primes $p$ and $q$ are adjacent in $Gamma(G)$, whenever $G$ contains an element with order $pq$. We say that $G$ is unrecognizable by prime graph if there is a finite group $H$ with $Gamma(H)=Gamma(G)$, in while $Hnotcong G$. In this paper, we consider finite groups with the same prime gr...
متن کاملLimit Groups for Relatively Hyperbolic Groups, I: the Basic Tools
We begin the investigation of Γ-limit groups, where Γ is a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. Using the results of [16], we adapt the results from [22]. Specifically, given a finitely generated group G, and a sequence of pairwise non-conjugate homomorphisms {hn : G → Γ}, we extract an R-tree with a nontrivial isometric G-action. We then pr...
متن کاملRelatively projective groups as absolute Galois groups
By two well-known results, one of Ax, one of Lubotzky and van den Dries, a profinite group is projective iff it is isomorphic to the absolute Galois group of a pseudo-algebraically closed field. This paper gives an analogous characterization of relatively projective profinite groups as absolute Galois groups of regularly closed fields.
متن کاملHomogeneity in relatively free groups
We prove that any torsion-free, residually finite relatively free group of infinite rank is not א1-homogeneous. This generalizes R. Sklinos’ result that a free group of infinite rank is not א1-homogeneous, and, in particular, gives a new simple proof of that result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1967
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1967-0217157-3